Variable Consistency Model of Dominance-Based Rough Sets Approach

نویسندگان

  • Salvatore Greco
  • Benedetto Matarazzo
  • Roman Slowinski
  • Jerzy Stefanowski
چکیده

Consideration of preference-orders requires the use of an extended rough set model called Dominance-based Rough Set Approach (DRSA). The rough approximations defined within DRSA are based on consistency in the sense of dominance principle. It requires that objects having not-worse evaluation with respect to a set of considered criteria than a referent object cannot be assigned to a worse class than the referent object. However, some inconsistencies may decrease the cardinality of lower approximations to such an extent that it is impossible to discover strong patterns in the data, particularly when data sets are large. Thus, a relaxation of the strict dominance principle is worthwhile. The relaxation introduced in this paper to the DRSA model admits some inconsistent objects to the lower approximations; the range of this relaxation is controlled by an index called consistency level. The resulting model is called variable-consistency model (VC-DRSA). We concentrate on the new definitions of rough approximations and their properties, and we propose a new syntax of decision rules characterized by a confidence degree not less than the consistency level. The use of VC-DRSA is illustrated by an example of customer satisfaction analysis referring to an airline company.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Probabilistic Rough Sets Under a Strict Dominance Relation

In order to handle inconsistencies in ordinal and monotonic information systems, the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) has been proposed and successfully applied in real decision making. However, there exists an error spread of inconsistencies in VC-DRSA. In this paper, we firstly induce a strict-dominance relation into Variable-Precision Rough Sets (VPRS). Two n...

متن کامل

An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle

Induction of decision rules within the dominance-based rough set approach to the multiple-criteria sorting decision problem is discussed in this paper. We introduce an algorithm called DOMLEM that induces a minimal set of generalized decision rules consistent with the dominance principle. An extension of this algorithm for a variable consistency model of dominance based rough set approach is al...

متن کامل

Statistical Model for Rough Set Approach to Multicriteria Classification

In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, Dominance-based Rough Set Approach (DRSA) has been introduced to deal with the problem of multicriteria classification. However, in real-life problems, in the presence of noise, the notions of rough approximations were found to be excessively restrictive, which l...

متن کامل

Variable Consistency Dominance-based Rough Set Approach to formulate airline service strategies

This study differs from previous ones applying multivariate statistical analysis and multiple criteria decision-making (MCDM) methods. We use the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) to formulate airline service strategies by generating airline service decision rules thatmodelpassengerpreferences for airline servicequality. Flowgraphsare applied to inferdecision rul...

متن کامل

Stochastic dominance-based rough set model for ordinal classification

In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, Dominance-based Rough Set Approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as multicriteria classification in decision analysis). However, in real-life problems, in the presence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000